Artificial Intelligence The Situation Calculus

Outline

- Reasoning about States and Actions
- Some Difficulties
- Generating Plans
- Additional Readings and Discussion

21.1 Reasoning about States and Actions

- To investigate feature-based planning methods much more thoroughly, richer language to describe features and the constraints among them will be introduced.
- Generally, a goal condition can be described by any wff in the predicate calculus, and we can determine if a goal is satisfied in a world state described by formulas by attempting to prove the goal wff from those formulas.

Situation calculus (1/3)

- A predicate calculus formalization of states, actions, and the effects of actions on states.
- Our knowledge about states and actions as formulas in the first-order predicate calculus
- Then use a deduction system to ask questions such as "Does there exist a state to satisfy certain properties, and if so, how can the present state be transformed into that state by actions"
 - \Rightarrow A plan for achieving the desired state.

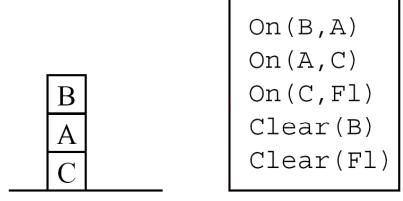
Situation calculus (2/3)

- The situation calculus was used in some early Al planning systems. ⇒ it does not used nowadays.
- However, the formalism remains important for exposing and helping to clarify conceptual problems.

Situation calculus (3/3)

- In order to describe states in the situation calculus, we reify states.
- States can be denoted by constant symbols (S0, S1, S2, ...), by variables, or by functional expressions.
- *Fluents*: the atomic wff can denote relations over states.

Example (Figure 21.1)



- First-order predicate calculus
 On(B,A)∧On(A,C)∧On(C,F1)∧Clear(B)∧...
- True statement
 On(B,A,S0)\On(A,C,S0)\On(C,F1,S0)\Clear(B,S0)
- Prepositions true of all states

```
(\forall x,y,s)[On(x,y,s)\land \neg (y=F1)\supset \neg Clear(y,s)]
And (\forall s)Clear(F1,s)
```

To represent actions and the effects (1/2)

1. Reify the action

- Actions can be denoted by constant symbols, by variables, or by functional expressions
- Generally, we can represent a family of move actions by the schema, move(x,y,z), where x, y, and z are schema variables.
- 2. Imagine a function constant, do, that denotes a function that maps actions and states into states.
 - do(α ,σ) denotes a function that maps the stateaction pair into the state obtained by performing the action denoted by α in the state denoted by σ .

To represent actions and the effects (2/2)

- 3. Express the effects of actions by wffs.
 - There are two such wffs for each action-fluent pair.
 - For the pair {On, move}.
 [On(x,y,s)∧Clear(x,s)∧Clear(z,s)∧(x≠z)
 ⊃On(x,z,do(move(x,y,z),s))]

negative effect axiom

consequent

Effect axioms

 We can also write effect axioms for the {Clear, move} pair.

```
[On(x,y,s)\land Clear(x,s)\land Clear(z,s)\land (x\neq z)\land (y\neq z)\supset Clear(y,do(move(x,y,z),s))][On(x,y,s)\land Clear(x,s)\land Clear(z,s)\land (x\neq z)\land (z\neq F1)\supset \neg Clear(z,do(move(x,y,z),s))]
```

- The antecedents consist of two parts
 - One part expresses the preconditions under which the action can be executed
 - The other part expresses the condition under which the action will have the effect expressed in the consequent of the axiom.

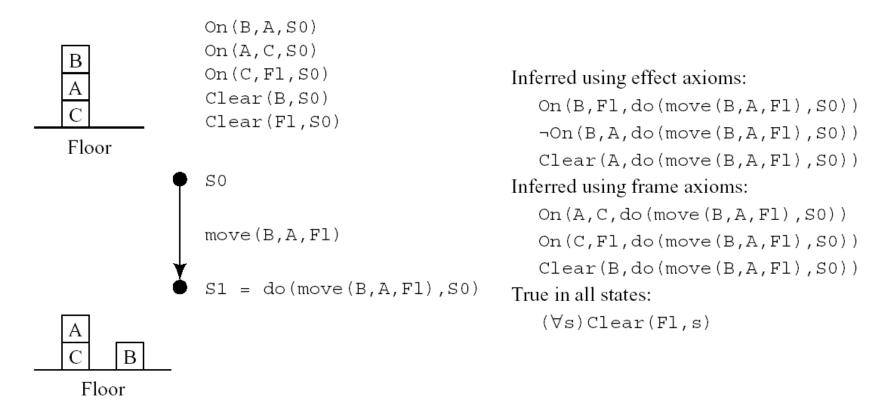


Figure 21.2 Mapping a State-Action Pair into a State

21.2.1 Frame Axioms (1/3)

- Not all of the statements true about state do(move(B,A,F1),S0) can be inferred by the effects axioms.
 - Before the move, such as that C was on the floor and that B was clear are also true of the state after the move.
- In order to make inferences about these constancies, we need *frame axioms* for each action and for each fluent that doesn't change as a result of the action.

21.2.1 Frame Axioms (2/3)

• The frame axioms for the pair, {(move, On)}

```
[On(x,y,s)\land(x\neq u)]\supset On(x,y,do(move(u,y,z),s)) \\ (\neg On(x,y,s)\land[(x\neq u)\lor(y\neq z)]\supset \neg On(x,y,do(move(u,v,z),s))
```

• The frame axioms for the peative (move, Clear)

```
Clear(u,s)\land(u\neqz)] \supset Clear(u,do(move(x,y,z),s))
```

 $\neg Clear(u,s) \land (u \neq y) \supset \neg Clear(u,do(move(x,y,z),s))$

21.2.1 Frame Axioms (3/3)

 Frame axioms are used to prove that a property of a state remains true if the state is changed by an action that doesn't affect that property.

• Frame problem

 The various difficulties associated with dealing with fluents that are not affected by actions.

21.2.2 Qualifications

- The antecedent of the transition formula describing an action such as move gives the preconditions for a rather idealized case.
 - To be more precise, adding other qualification such as ¬Too_heavy(x,s), ¬Glued_down(x,s), ¬Armbroken(s), ...
- Qualification problem
 - The difficulty of specifying all of the important qualifications.

21.2.3 Ramifications

- Ramification problem
 - Keeping track of which derived formulas survive subsequent state transitions.

21.3 Generating Plans

- To generate a plan that achieves some goal, $\gamma(s)$,
 - We attempt to prove $(\exists s) \gamma(s)$
 - And use the answer predicate to extract the state as a function of the nested actions that produce it.

Example (Figure 21.1) (1/2)

- We want a plan that gets block B on the floor from the initial state, SO, given in Figure 21.1.
- Prove $(\exists s)$ On(B, F1, s)
- We will prove by resolution refutation that the negation of (∃s) On(B, F1, s), together with the formulas that describe SO and the effects of move are inconsistent.
 - Use an answer predicate to capture the substitutions made during the proof.

Example (Figure 21.1) (2/2)

```
On(A,C,SO)
```

On(C,F1,S0)

Clear(B,SO)

Clear(F1,S0)

 $[On(x,y,s)\land Clear(x,s) \land Clear(z,s) \land (x\neq z)\supset On(x,z,do(move(x,y,z),s))]$

Difficulties

- If several actions are required to achieve a goal, the action functions would be nested.
- The proof effort is too large for even simple plan.

Additional Readings

- [Reiter 1991]
 - Successor-state axiom
- [Shanahan 1997]
 - Frame problem
- [Levesque, et al. 1977]
 - GOLOG(alGol in LOGic)
- [Scherl & Levesque 1993]
 - Robot study in Perception Robot Group